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Abstract
Accurate user profiling is important for an online
recommender system to provide proper personal-
ized recommendations to its users. In many real-
world scenarios, the user’s interests towards the
items may change over time. Therefore, a dynamic
and evolutionary user profile is needed. In this
work, we come up with a novel evolutionary view
of user’s profile by proposing a Collaborative Evo-
lution (CE) model, which learns the evolution of
user’s profiles through the sparse historical data in
recommender systems and outputs the prospective
user profile of the future. To verify the effective-
ness of the proposed model, we conduct experi-
ments on a real-world dataset, which is obtained
from the online shopping website of Tencent Inc.—
www.51buy.com and contains more than 1 million
users’ shopping records in a time span of more than
180 days. Experimental analyses demonstrate that
our proposed CE model can be used to make better
future recommendations compared to several state-
of-the-art methods.

1 Introduction
Many real-world recommender systems provide users with
recommendations based on their interests. Therefore, to make
proper personalized recommendations to a user, an accurate
user profile that reflects the user’s interests is crucial. Typ-
ically, user profiling is either knowledge-based or machine-
learning-based [Middleton et al., 2004]. Knowledge-based
approaches make use of users’ meta information, such as age,
gender etc., to design some rules or patterns for recommen-
dations. Machine-learning-based approaches build models to
learn users’ interests from users’ historical behaviours au-
tomatically. The majority of current recommender systems
adopt the machine-learning-based approaches for user profil-
ing [Adomavicius and Tuzhilin, 2005]. One of the most pop-
ular approaches is based on matrix factorization (MF), which
learns the latent interests of a user as the user’s profile by
collaboratively factorizing the rating matrix over historically
recorded user-item preferences [Koren et al., 2009].

⇤Corresponding author

Though the MF techniques in recommender systems are
proven to be promising for user profiling, they have a ma-
jor assumption that if a user shows interests in some items in
the historical records, he/she should be always interested in
these types of items in the future. In other words, current MF
techniques assume users have constant interests towards the
item set. This could only be true for the off-line experiments,
in which training data and testing data are drawn uniformly
from a static data set. However, in many real-world scenar-
ios, a user’s interests towards an item set can change over
time [Lathia et al., 2010]. Firstly, a user’s interests towards
some items can be diminishing. For example, a user may loss
the interest in mobile phones if he/she has just purchased one.
Secondly, some items may raise as new favorites for a user.
For example, a new father may start to look for infant educa-
tion courses, which he has never thought of before. Thirdly,
users’ interests on some items may vary upon time. For in-
stance, thick coats may only get interests in the cold winters.

In order to model the interests of users, there are two keys:
one is to quantitatively calculate the interests of users at cer-
tain time point; the other is to include the changes of interests
in future predictions. As suggested by previous researches,
users’ static latent interests can be learned collaboratively
from the sparse dataset in a particular time interval via the MF
model. A straightforward solution is to perform an individual
MF model to profile users’ interests at each time point, and
then discover evolutionary patterns by using time series anal-
ysis or sequential pattern mining. However, historical data at
certain time point can be extremely sparse. In this case, the
learned individual MF models may be very inaccurate, which
result in the failure of the subsequent discovery of evolution-
ary patterns. In this paper, we propose a method named Col-
laborative Evolution (CE) to integrate MF and vector autore-
gressive [Lütkepohl, 2005] into a unified learning framework,
where users’ interests at each time point and their evolutions
are learned simultaneously and collaboratively.

As an intuitive sketch of the CE model, iteratively we learn
the users’ latent interests in a collaborative filtering fashion,
and then model the evolution of these latent interests to fur-
ther guide the learning of the users’ latent interests in the fu-
ture. The collaborative learning and the evolutionary learning
iteratively affect each other. The CE model outputs the pre-
dictions of users’ evolutionary interests in the future. Then,
based on the predictions of users’ evolutionary interests as

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

3804



user profiles, we make personalized recommendations for the
users on certain day of the future. Here is a running example
for the CE model to make recommendations: a man is ob-
served to purchase roses in an online shopping system, and
the CE model may learn the latent information that this man
is possibly in love. Because collaboratively from all men’s
records, roses are associated to the latent status “in-love”. Af-
ter knowing men’s “in-love” status, another information we
could get from the training data is statistically what would be
their future gifts (such as a ring) and when to buy? Then the
CE model shall timely recommend a proper item to the man
when it comes to the right time.

2 Preliminary

2.1 Notations and Problem Statement
We first introduce some general notations in this paper. Other
specific notations of the proposed method will be further in-
troduced in the subsequent sections. For a fixed time inter-
val t, the browsing history is recorded by an m ⇥ n matrix
Rt, where m represents the number of users, n represents the
number of items and Rt

i,j is the value of the cell (i, j) of Rt,
which can be either a missing value or a rating given by user
i on item j. We use the superscript > to denote the transport
of a matrix. Given a sequence of user browsing behaviors
of T time intervals, R1

,R2
, . . . ,RT , we aim to model the

users’ k-dimensional interests, Ut 2 Rk⇥m, in each of the
time intervals, t 2 {1, 2, . . . , T}, where k is the parameter
of the number of users’ implicit interests, and explore their
evolutionary processes. We finally make future recommen-
dations to users in time intervals{T + 1, T + 2, . . .} based
on their evolutionary interests. Note that each Rt is much
sparser than the aggregation of all the {Rt}’s. However, this
aggregation makes the evolutionary information discarded.

2.2 Probabilistic Matrix Factorization
Recently, many MF methods have been proposed for CF
in recommender systems. In this paper, we start from the
probabilistic matrix factorization (PMF) method [Mnih and
Salakhutdinov, 2007]. PMF aims to factorize a user-item rat-
ing matrix by maximizing the following conditional distribu-
tion over the observed ratings at the time interval t,

p(Rt | Ut,Vt,�2) =
mY

i=1

nY

j=1

⇣
N (Rt

ij | Ut
i
>
Vt

j ,�
2)
⌘Itij

, (1)

where Ut 2 Rk⇥m is the latent factor matrix for users (i.e.,
users’ k-dimensional interests) at time interval t, Vt 2 Rk⇥n

is the latent factor matrix for items (i.e., items’ k-dimensional
properties) at time interval t, N (x | µ,�2

) is the probability
density function of the Gaussian distribution with the mean µ,
and the variance �2, and Iij is the indicator function which is
equal to 1 if user i browsed item j in the time interval t, and 0

otherwise. Besides, we use a subscript of a matrix to denote
the corresponding column of the matrix, e.g., Ut

i 2 Rk⇥1

and Vt
j 2 Rk⇥1 denote the vector for user i and the vector

for item j respectively.

2.3 Model the Changes of User’s Interests
A proper recommendation should not only rely on users’ cur-
rent interests, but also need to consider their evolutions. In
online shopping scenarios, it is very likely that users change
their interests before the next browsing on the shopping web-
site. Therefore, it is crucial for online shopping websites to
capture the changes in users’ interests.

Intuitively, on one hand, an interest can be changing due
to the trend of this particular interest. On the other hand, dif-
ferent interests may be related and affect each other. There-
fore, a desirable estimation of an interest should consider
both the history of the interest and the influence from the
other interests. In light of the above intuition, we propose to
model the user’s latent interests into the vector autoregressive
model [Lütkepohl, 2005].

Based on the vector autoregressive model, the feature vec-
tor of a user i in the time interval t can be modeled by the
feature vectors of the user in the previous � (� < t) time
intervals, i.e., t�1, . . . , t��:

Ut
i = A1

iU
t�1
i +A2

iU
t�2
i + . . .+A�

i U
t��
i + "ti, (2)

where "ti is an uncorrelated Gaussian noise with a zero-
mean and a covariance matrix Di 2 Rk⇥k to be estimated,
and {Aj

i 2 Rk⇥k}�j=1 is the set of coefficient matrices to
be learned, each matrix of which represents the correlation
of features in each of the previous � time intervals. After
{Aj

i 2 Rk⇥k}�j=1 and Di are learned, one can use them and
the observed time series of the user’ interests {Ut

i}Tt=1 to pre-
dict the user’s future interests {Ut

i}t=T+1, recursively. In the
following, we present how to estimate the parameters in (2)
for a particular user.

Least Square Estimation with Fixed �
Suppose that for a particular user i, a series of k-dimensional
feature vectors of T time intervals {Ut

i}Tt=1 is available. The
parameters {At

i}
�
t=1 and Di are to be estimated. For con-

venience in presentation, we introduce the operator vec(·),
which transforms a matrix into a vectors by stacking the
columns. Other notations used for parameter estimation are
in Table 1.

Table 1: Notations

Symbol Definition Deminsion
Yi

⇥
U1

i , . . . ,U
T
i

⇤
k ⇥ T

Bi

h
A1

i , . . . ,A
�
i

i
k ⇥ k�

Zt
i

h
Ut

i
>
, . . . ,Ut��

i

>i>
(k�)⇥ 1

Zi

⇥
Z1

i , . . . ,Z
T
i

⇤
(k�)⇥ T

�i
⇤
["1i , . . . , "

T
i

⇤
k ⇥ T

yi vec(Yi) (kT )⇥ 1

�i vec(Bi) (k

2
�)⇥ 1

To calculate {At
i}
�
t=1, following the mathematical deriva-

tion in [Neumaier and Schneider, 2001], we obtain
�i = ((ZiZ

>
i )
�1Zi ⌦ Ik)yi, (3)
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where Ik is the k⇥k identity matrix, ⌦ denotes the Kronecker
product. Based on the definition of �i, one can recover Bi

and thus obtain {At
i}
�
t=1.

To calculate the covariance matrix Di,

Di =
1

T � �� 1

TX

t=�+1

⌘t
i⌘

t
i
>
, (4)

where ⌘t
i = Ut

i �
P�

l=1 A
l
iU

t�l
i .

3 Collaborative Evolution
A primary problem in recommender systems is to know how
likely a user is interested in an item on a future day. This
likelihood could be measured by the probability that the user
would browse the item on the particular day. Given histori-
cal records, e.g., browsing log, a desirable recommender sys-
tem makes future recommendations based on the predictions
of the user’s interests on the item set. Note that the histori-
cal records can only reveal the users’ historical interests. To
make proper item recommendations in a future time, we need
to infer the users’ interests at the time when the recommen-
dations are being made. In this section, we describe our pro-
posed method for making recommendations based on users’
evolutionary interests in detail.

3.1 Bootstrap
Before applying the vector autoregressive method to model
the evolutionary process of users’ interests, one needs to ob-
tain an initial sequence of users’ latent feature vectors. Given
a series of user-item rating matrices of T time intervals,
{Rt}Tt=1, we propose use the first T0 (T0  T ) rating matri-
ces {Rt}T0

t=1 to learn the initial sequence of factor matrices,
{Ut}T0

t=1, for users. Instead of learning the factor matrices
independently, we further propose to learn them jointly by
enforcing the factor matrices for items to be shared over dif-
ferent time intervals, i.e., V1

= . . . = VT0 . In the sequel, we
use V0 to denote the shared factor matrix for items over time.
The motivations behind this are two-folds: 1) though users’
interests are changing over time, the properties of items are
relatively stable, and 2) since rating matrices in each time in-
terval can be very spare, jointly factorizing all the matrices
can obtain more precise factor matrices for both users and
items. Therefore, in the bootstrap step, we aim to learn the
initial factor matrices, {Ut}T0

t=1 and V0 by solving the fol-
lowing optimization problem,

max

{Ut}T0
t=1,V

0

T0X

t=1

mY

i=1

nY

j=1

⇣
N

⇣
Rt

ij | Ut
i
>
V0

j ,�
2
⌘⌘It

ij

,

where we place zero-mean spherical Gaussian priors [Dueck
and Frey, 2004; Mnih and Salakhutdinov, 2007] on V0 and
each Ut.

We conduct theoretical study on how many time intervals
should be used in the bootstrap step, i.e., how to set the value
of T0. In general, without considering any additional infor-
mation, e.g., rating matrices in time intervals from T0 to T ,
one can apply the Gaussian elimination approach to solve (2)

with the initial sequence of user factor matrices, {Ut}T0
t=1.

However, to use Gaussian elimination accurately, the length
of the initial sequence, T0, is required to satisfy some con-
straint, which is shown in the following proposition.
Proposition 1. Suppose the evolution is of order � and the

dimensionality of a user’s feature vector is k, then the mini-

mum number of the time intervals to be used in the bootstrap

step is k�.

Proof. According to (3), in order to avoid for underestimation
when using Gaussian elimination, the number of rows in y
should be greater than the number of rows in �. Note that the
number of rows in y is kT0, where T0 is the number of time
intervals in the bootstrap step, and the number of rows in �
is k2�. kT0 � k

2
� implies T0 � k�. That is, the minimum

number of time intervals in the bootstrap step is k�. The
proof is completed.

Above all, the Proposition 1 suggests that T0 is required to
satisfy T0 � k�.

3.2 Collaborative Evolution
After the bootstrap step, we obtain the factor matrix for items,
V0, and for each user i, we have an initial sequence of factor
matrices {Ut

i}
T0
t=1 and an initial sequence of coefficient matri-

ces, {At
i}
�
t=1. All that remains is the collaborative evolution

(CE) step, which is to learn the factor matrices Vt and Ut in
each time interval in {T0 + 1, . . . , T}, and update {At

i}
�
t=1

for each user i by performing PMF on the rating matrices,
{Rt}Tt=T0+1, and applying the vector autoregressive model
on {Ut

i}Tt=T0+1 recursively and simultaneously. The overall
optimization problem to be solved can be written as follows,

max

{At
i}
�
t=1,

{Ut,Vt}T
t=T0+1

TX

t=T0+1

mY

i=1

nY

j=1

⇣
N

⇣
Rt

ij | Ut
i
>
Vt

j ,�
2
⌘⌘It

ij

, (5)

where the following two priors are placed on Ut and Vt re-
spectively,

p(Vt | V0
,�

2
v) =

nY

j=1

N (Vt
j | V0

,�

2
vIk), (6)

p(Ut | Wt
i ,�

2
u) =

mY

i=1

N (Ut
i | Wt

i ,�
2
uIk), (7)

and Wt
i is recursively updated via

Wt
i = A1

iU
t�1
i +A2

iU
t�2
i + . . .+A�

i U
t��
i . (8)

The prior in (6) is to constrain the new factorized latent ma-
trix Vt for items not to be very different from V0, since the
properties of items are assumed to be stable over time. The
prior in (7) aims to use the evolutionary process to affect the
shape of the new factorized latent matrix Ut for users.

As shown in [Mnih and Salakhutdinov, 2007], maximiz-
ing the log-posterior is equivalent to minimizing the sum-of-
squared errors with quadratic regularization terms, the opti-
mization problem in (5) can be rewritten into the following
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Algorithm 1 Collaborative Evolution

Input: Users’ browsing records {Rt}Tt=1, number of latent
features k, number of evolution coefficients �
Bootstrap:
for t = 1 to T0 do
Rt

ij ⇠ Ut
i
>
V0

j
end for
Initialize {At}�t=1 via (3).
Collaborative Evolution:
for t = T0 + 1 to T do

Update Wi via (8).
while Ut and Vt are not converge do

Update Ut and Vt via (10), respectively
end while
Update {At}�t=1 via (3).

end for
Output: The evolution coefficients {At}�t=1 and the fea-
ture vectors {Ut}Tt=1 for each user, and the shared factor
matrices {V0} for items.

equivalent form,

min

{At
i}
�
t=1,

{Ut,Vt}T
t=T0+1

J =

TX

t=T0+1

mX

i=1

nX

j=1

✓
I

t
ij

⇣
Rt

ij �Ut
i
>
Vt

j

⌘2

+

�

2

�

2
u

��Ut
i �Wt

i

��2
+

�

2

�

2
v

��Vt
j �V0

j

��2
◆
.(9)

Note that there are three types of parameters in CE, i.e.,
{Ut}’s, {Vt}’s and {At

i}
�
t=1. We propose to optimize the

objective in (9) by alternatively updating {Ut}’s, {Vt}’s, and
{At

i}
�
t=1. The updating rule for {At

i}
�
t=1 is given by Least

Square Estimation in the previous section, and the updating
rules for Ut and Vt in each time interval t are shown as fol-
lows respectively,

Ut
i  Ut

i �
@J
@Ut

i

, and Vt
j  Vt

j �
@J
@Vt

j

, (10)

where
@J
@Ut

i

= �2
nX

j=1

(It
ijV

t
j(R

t
ij �Ut

i
>
Vt

j)) + 2
�2

�2
u

(Ut
i �Wt

i),

@J
@Vt

j

= �2
mX

i=1

(It
ijU

t
i(R

t
ij �Ut

i
>
Vt

j)) + 2
�2

�2
v

(Vt
j �V0

j ).

The overall algorithm of CE is summarized in Algorithm 1.

3.3 Item Recommendations in Future time
With the evolution coefficients matrices {At}�t=1, the shared
factor matrix V0 for items, and the feature vectors {Ut}Tt=1
for each user learned in the previous section, to provide rec-
ommendations to users at a particular time interval T +�, we
first compute WT+� by recursively applying (8), and then
make predictions on which items the user would be interested
by computing the following ratings for each item,

RT+�
ij = WT+�

i

>
V0

j . (11)

3.4 Analysis of the Evolution Coefficients
We use data from the first T0 time intervals to estimate ini-
tial parameters in the bootstrap step, and data of the last
N = T � T0 time intervals to estimate the parameters of
the CE model. Besides, we suggest the minimum value of
T0 to estimate accurate initial parameters. Now, we study the
reliability of the evolution coefficients {At}�t=1 in terms of
N . Specifically, we fix all other parameters, i.e., {Ut}t and
{Vt}t, and analyze {At

i}
�
t=1 for a particular user i. For the

ease of notations, we omit the subscript i in the following
analysis. To start with, we first define the covariance matrix
estimate for vec( ˆB) as,

ˆ

⌃B = (

TX

t=1

Ut
(Ut

)

>
)

�1 ⌦D, (12)

where D is defined in (4). For convenience in presentation,
we define the operator [·]j as the j-th element in a vector, and
[·]ij as the (i, j) element of a matrix.

Following [Neumaier and Schneider, 2001], a confidence
interval for  = [vec(B)]j of the parameter matrix B can
be constructed from the distribution of the t-ratio, t =  ̂� 

�̂ 
,

where ˆ

 = [vec(

ˆB)]j , and �̂2
 = [

ˆ

⌃B ]jj .
Assume that the t-ratio follows Student’s t-distribution,

t(·), with N degrees of freedom. Then with the (↵ ⇥ 100)%

confidence, the margin of error for a parameter estimation ˆ

 

is defined as

ˆ

 ± =

ˆ

 �  = t

✓
N,

1 + ↵

2

◆
�̂ (13)

where ↵ 2 [0, 1] and t(d, ✓) is the ✓-quantile of a t-
distribution with d degrees of freedom.
Proposition 2. The reliability of the CE Model is improved

monotonously when T increases.

Proof. Based on (13), ˆ

 ± is defined by a t-distribution with
N = T � T0 degrees of freedom. When the number of
time intervals T increases, the degrees of freedom N also
increases. Moreover, a fixed ↵ ⇥ 100% confidence interval
for a t-distribution with larger degrees of freedom leads to
smaller values of the margin of error of the parameter esti-
mate. Therefore, the CE model is improved monotonously
by decreasing the margin of error of the parameter estimate,
when the number of time intervals for training is increasing.
This completes the proof.

4 Experiments
In this section, we conduct experiments on a real-world on-
line shopping dataset to verify the effectiveness of CE in the
recommender system.

4.1 The Dataset
The real-world dataset used for experiments is from a Chinese
e-commerce website, www.51buy.com. The dataset covers all
users’ browsing records from April 2013 to September 2013.
The long time span of the data makes it suitable to evaluate
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the effect of changing in users’ interests. For further evalu-
ations and future researches, the full dataset and the code in
the experiments are released at http://zhongqi.me.

4.2 Experimental Settings
A primary problem in the recommender system is to know
how likely a user is interested in an item on a future day. This
likelihood could be measured by the probability that the user
tends to browse the item on a particular day. In our experi-
ments, we make the duration of each time interval to be one
day. From the browsing log, we first construct an user-item
matrix for each day. The cell value of the matrix is the count
of a user’s daily browsing an item. We further normalize each
user-item matrix such that for each user, the sum of the item
browsing, if is not 0, is equal to 1. With these normalized
user-item matrices, we apply our proposed CE model to make
predictions for a particular future day.

For evaluation, we use the “Root Mean Square Error”
(RMSE). The RMSE is widely adopted as the evaluation ma-
tric in the evaluation of recommender systems, such as the
Netflix Prize [Bennett and Lanning, 2007]. In our settings,
the RMSE indicates the difference between the true and pre-
dicted likelihood that a user browsing an item.

4.3 Performance Comparison
The comparison experiments are conducted on the dataset,
which contains about 1 million users and more than 270, 000

items in a time span of 180 days. To show the effectiveness
of our proposed method, we compare CE with the following
baseline methods:

• PMF

[Mnih and Salakhutdinov, 2007]. PMF is an effec-
tive MF method for missing value prediction. In order
to demonstrate the effect of the changes in users’ inter-
ests in the training data, we trained PMF with differ-
ent training sets: “PMF rcnt60d”, “PMF rcnt30d” and
“PMF rcnt15d”, which use the most recent 60, 30 and
15 days’ records in the training set respectively.

• BPMF

[Salakhutdinov and Mnih, 2008]. BPMF is a
fully Baysian treatment of the PMF models. Although
the BPMF approach is computationally expensive than
PMF, it usually leads to better performance.

• timeSVD++

[Koren, 2009]. timeSVD++ tracks the
changes throughout the life span of the data. This
method is reported to achieve excellent performance on
the Netflix dataset [Bennett and Lanning, 2007] by con-
sidering temporal dynamics.

We present the results of these baselines with fine-tuned pa-
rameters. Figure 1 shows the performance comparison.

Firstly, we aim to verify the claim that the historical data
and the future data have different distributions. For the
three PMF baselines, i.e. “PMF rcnt15d”, “PMF rcnt30d”,
“PMF rcnt60d”, which use the recent 15, 30, 60 days of his-
torical data for training respectively, we can observe that us-
ing the recent 30 days of historical data achieves best perfor-
mance among the three. Empirically on this dataset, using
30 days of data happens to be a balance between the training
data insufficiency (15 days of data) and the change of users’
interests (60 days of data).

Figure 1: Performance Comparison. The training set contains
browsing history of more than 270, 000 items from March 1,
2013 to August 21, 2013.

Secondly, our CE method achieves the best performance
comparing with both BPMF and timeSVD++. Besides, we
observe that both timeSVD++ and our CE methods demon-
strate advantage when predicting in the future. This is be-
cause both methods are designed to tackle the temporal dy-
namics in recommender systems. Other than better perfor-
mance in terms of prediction accuracy, our CE method is
more stable timeSVD++ as the RMSE of the CE method
would not raise in the long future.

Thirdly, all the methods have regular drop of performance
in nearly every 7 days and these drops happen on the week-
ends. We find that on the weekends, the users usually browse
different items, comparing to those they view on the week-
days. This suggests that we may need to consider a different
model for user behaviors on the weekends, which is beyond
the scope of this paper, and is a potential future extension.

4.4 Size of Time Intervals in Training
We have analyzed the confidence intervals of CE’s parame-
ter estimations, and conclude that the performance of CE can
be improved monotonously when increasing the number of
time intervals in training. In this section, we show the exper-
imental results of varying the size T of time intervals in CE’s
training. Experimental results are shown in Figure 2.

In the experiments, we gradually increase the size of
time intervals for training the CE model. “CE 5Train”,
“CE 15Train”, “CE 30Train”, and “CE 50Train” represent
the training with the data from 5, 15, 30, and 50 consecu-
tive days before testing respectively. For testing, we use data
from August 22, 2013 onwards. On one hand, we empirically
justify Proposition 2, which states that the reliability of the
CE model increases monotonously as the size of the training
time intervals increases. As can be seen in Figure 2, when the
size of the training time intervals increases from 5 to 50, the
RMSE of CE decreases for all future predictions. Because
the decrease of RMSE reflects that the model better captures
the changes of the user’s interests, we conclude that the re-
liability of the model increases when the size of the training
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Figure 2: Different sizes T of the Time Intervals in Training.
As T increases, the performance always becomes better and
eventually approaches a limit.

time intervals increases. On the other hand, when the size T

of the time intervals for training is larger than a certain value,
i.e. 50, increasing T does not lead to significant decrease of
RMSE. To balance the computational cost and the prediction
accuracy, we propose to use 30 time intervals for training the
CE model on our dataset.

5 Related Works
Our work is mostly related to collaborative filtering with tem-
poral dynamics, concept drift and Markov decision process
(MDP).
Collaborative Filtering is an approach of making automatic
prediction (filtering) about the interests of a user by col-
lecting interests from many users (collaborating). Some
of the best results are obtained based on matrix factoriza-
tion techniques [Marlin, 2003; Singh and Gordon, 2008;
Koren et al., 2009; Lu et al., 2015]. However, most of col-
laborative filtering methods assumed that a user’s interests to-
wards a fixed item set do not change, which does not hold in
most current online shopping scenarios.

Being aware of the change of users’ interests, several re-
cent works have attempted to integrate temporal dynamics
into collaborative filtering methods. A major approach is
by introducing a time decay function to weight the item set
according to the data age [Koren, 2009; Liu et al., 2010;
Nakatsuji et al., 2012]. In practice, the changes in users’ in-
terests are too complex to be modeled by a time decay func-
tion. The time decay function may only be able to approx-
imate some short-term changes in users’ interests, but fail
to model the long-term ones. Besides, the time decay ap-
proaches are usually not able to explore when would users
change their interests. Currently the temporal dynamics re-
searches cover many specific scenario [Pálovics et al., 2014;
Liu and Aberer, 2014; Liu, 2015], and we are the first to ex-
plore the evolution of user’s interest by mining a complete
dataset from a real world recommender system.

Some works try to capture the changes of users’ inter-
ests by taking sequential patterns into account. A major ap-

proach is by utilizing the state-based models, such as the
Markov chain model [Rendle et al., 2010; Zhao et al., 2012;
Wang and Zhang, 2013; McAuley and Leskovec, 2013].
However because the item set is extreme large in the online
shopping scenario, it would usually not be possible to com-
pute the transition functions over the item set effectively nor
efficiently.
Concept drift is a phenomenon when the observed data is
generated from a distribution that changes over time [Tsym-
bal, 2004]. The strategies can be summarized into three
groups. The first is to discount the data that are not relevant
for prediction [Cunningham et al., 2003]. The second is to
build an ensemble of models, each of which is fitted to a dif-
ferent subset of the data [Street and Kim, 2001]. The third
is mining data instances ordered by time, which is known as
data stream mining [Fan, 2004; Gao et al., 2007]. Though
those research problems are related to deal with the changing
of data distributions, the settings of our Collaborative Filter-
ing for recommender systems is quite different: while most
existing techniques under concept drift tracked a single con-
cept, the user of a recommender system often shows multiple
interests, which usually influence each other and only associ-
ated with limited data instances [Koren, 2009].
Markov decision process An MDP-based recommender sys-
tem views the problem of generating recommendations as a
sequential optimization problem [Shani et al., 2002]. Be-
cause of the nature of Markov decision process, this approach
needs a strong initial model built with plenty of data, which is
not practical in the sparse dataset of real-world applications.

6 Conclusion
We proposed a Collaborative Evolution (CE) model to em-
bed an evolutionary view of users’ profiles to MF. In the
CE model, two processes, i.e. the collaborative learning of
the users’ profiles in each time interval and the evolutionary
learning of the user’s profiles along the consecutive time in-
tervals, are iteratively guided by each other. As an output of
the CE model, we aim to predict users’ profiles in a certain
day of the future by the vector autoregressive model obtained
from the evolutionary learning. This evolutionary learning
of the users’ profiles is a breakthrough of the current collab-
orative filtering techniques. The CE method is particularly
useful in a scenario where the users demonstrate frequently
changing behaviours and long-term predictions in the future
are needed, such as the online shopping scenario. We per-
form experiments on the real-world dataset from the online
shopping website www.51buy.com, which contains more than
180 days of records for 1, 000, 000 users and 270, 000 items.
The dataset will be released and a sample has been published
online. With the evolutionary learning of users’ profiles, we
enhanced the current online shopping recommender systems
by providing predictions for the long future.
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